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Subcutaneously implantable 
electromagnetic biosensor system 
for continuous glucose monitoring
Seongmun Kim1, Jagannath Malik2, Jong Mo Seo3,4, Young Min Cho5,6 & Franklin Bien1,2*

Continuous glucose monitoring systems (CGMS) are becoming increasingly popular in diabetes 
management compared to conventional methods of self-blood glucose monitoring systems. They 
help understanding physiological responses towards nutrition intake, physical activities in everyday 
life and glucose control. CGMS available in market are of two types based on their working principle. 
Needle type systems with few weeks lifespan (e.g., enzyme-based Freestyle Libre) and implant type 
system (e.g., fluorescence-based Senseonics) with few months of lifespan are commercially available. 
An alternate to both working methods, herein, we propose electromagnetic-based sensor that 
can be subcutaneously implanted and capable of tracking minute changes in dielectric permittivity 
owing to changes in blood glucose level (BGL). Proof-of-concept of proposed electromagnetic-based 
implant sensor has been validated in intravenous glucose tolerance test (IVGTT) conducted on swine 
and beagle in a controlled environment. Sensor interface modules, mobile applications, and glucose 
mapping algorithms are also developed for continuous measurement in a freely moving beagle during 
oral glucose tolerance test (OGTT). The results of the short-term (1 h, IVGTT) and long-term (52 h, 
OGTT) test are summarized in this work. A close trend is observed between sensor frequency and BGL 
during GTT experiments on both animal species.

A growing research interest in healthcare systems has been observed in the last few decades, primarily focusing 
on the development of various point-of-care medical devices that can be of significant help to patients with finan-
cial or remote location constraints. Data base driven algorithms, multimodal information processing, and trend 
analysis are the key parts of bioinformatics that can help managing individual health, and issue predictive alerts 
to prevent fatal situations1,2. Metabolic diseases require the continuous management of eating habits, dietary 
plans, physical exercise, exposome and other general behaviors including sleep. The number of people with dia-
betes worldwide is 460 million as of 2019, and it is steadily increasing every year, with approximately 11.3% of 
deaths worldwide is due to the diabetes-related complications3. Diabetes mellitus increases further incidences of 
health complications exponentially4,5. The risk in diabetes can be minimized by monitoring and adapting habits 
to control blood glucose level (BGL). Commonly used method to measure BGL is using enzyme-based glucose 
sensor relying on electrochemical reaction6,7, known as amperometric sensor that produces measurable cur-
rent proportional to BGL. This can be implemented in two ways either measuring directly from blood or from 
interstitial fluid (ISF). Former method is also known as self-blood glucose monitoring (SBGM) relies on finger-
pricking method where a small blood is drawn from fingertip and put on glucose measuring strip. Although it 
measures glucose level with considerable accuracy, it is painful, causes skin irritation to the patients requiring 
frequent measurements. This method does not give any insight of BGL changes over time. Later method measures 
glucose level from the ISF through a needle inserted into the subcutaneous fat and connected to a measuring 
device placed and attached on skin. The device has main measurement unit and other control, communication 
units. This method is of one-time use, have short self-life (few days), expensive, and painful due to the insertion 
and presence of a needle for in-situ measurements8–10. It provides a BGL trend over continuous time, however 
the sensor life is few days. Extending the enzyme activity using electrochemical coating, sensor life could be 
increased from few days; however, limited to approximately two weeks of use11,12. Various methods alternate to 
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enzyme-based blood glucose detection have been extensively reviewed to improve lifespan of sensor, accuracy 
of CGMS in literature13,14. Optical methods that use light-emitting diode (LEDs) of different wavelengths15–17 
are also extensively studied for blood glucose detection. Usually, the sensor is a photo sensitive detector that can 
detect variations in optical intensity owing to variations in blood glucose level. Near-Infrared optical frequencies 
show glucose dependent intensity variations due to spectral absorption when illuminated, and the reflectance 
changes with the blood glucose variations. However, the strong absorption and weak intensity of the reflected 
signal affects the accuracy. To overcome this, improved optical methods using fluorescent materials with glucose 
selectivity have also been investigated18,19. The method uses a glucose-binding molecule that causes a change in 
fluorescent activity depending on the glucose level in blood. However, this method is limited by the degradation 
of the fluorescent material itself over time. As a result, the fluorescence reflectance diminishes gradually, and as 
time passes, it is barely detectable20,21.

The development of electromagnetic based glucose sensors has been studied in various lab experiments to 
non-invasive measurement of blood glucose level22. From a recent study it is understood that mechanism of 
glucose metabolism is not straightforward rather a sophisticated cascade of biochemical reactions. However, the 
dielectric response of water is directly affected by the glucose and a relevant marker for indirect measurement 
of glucose level in vivo23. The fundamental working principle of EM-based glucose sensors is to sense glucose 
dependent dielectric permittivity changes. The glucose dependent dielectric permittivity of blood has been 
characterized over a wide frequency range24. It has been observed that the dielectric permittivity decreases with 
increase in glucose level25. In general, glucose level dependent permittivity changes are reflected as a change in 
the resonance frequency of these EM sensors. Few of the relevant published works using electromagnetic based 
glucose sensor are in vitro measurement technique26,27 and wearable type measuring in vivo from outside body28. 
EM-based permittivity sensing biosensors have already proven to be effective for the detection of tumors and 
malignant cells in the body. The dielectric properties of various organs and tissues in living bodies have been pre-
viously characterized over a wide spectrum29,30. The resonance frequency of proposed EM-based implant sensor 
depends on permittivity of the surrounding environment. The sensor frequency changes inversely with changes in 
dielectric permittivity of the material in which sensor is embedded. The dielectric permittivity of blood changes 
as the glucose level changes. This glucose dependent permittivity changes are reflected in the sensor resonance 
frequency. Using a regression model, sensor frequency can be mapped to BGL. The EM-based sensors for BG 
measurement have already been attempted, and encouraging results have been reported in several research31,32.

EM resonators can be designed with different shapes and sizes and optimized for different frequencies of 
operation. Measurable parameters in the EM sensor that are indicative of the glucose level can be either reflec-
tion-based S11 or transmission-based S21 considering both magnitude and phase characteristics. Non-invasive 
measurement of glucose from outside the body has several challenges owing to high reflection of signals from 
the upper skin layer and low penetration depth of the signal33. The electromagnetic signal from the external 
transmitter experiences multiple reflections and strong attenuation from upper tissue layers. A marginal power 
that can reach subcutaneous layer and has weak sensing performance.

A minimally invasive implant type EM-based sensor is presented as a possible biosensor for real time BGL 
tracking. The proposed sensor is capable of detecting and tracking minute changes in the dielectric permittivity 
of interstitial glucose34 (Fig. 1a). The sensor was designed and simulated using full-wave electromagnetic simula-
tor CST Microwave Studio. The sensor was optimized for maximum sensitivity considering a bio-environment 
similar to that of muscle and fat for ISM band. Here authors refer sensitivity as the frequency variations for small 
permittivity change of the material surrounding the sensor. The present sensor can’t detect glucose directly. The 
sensor frequency changes according to small permittivity changes. In the modelling of sensor in CST simulator, 
we consider permittivity variations of the material surrounding the sensor. Of course, we didn’t simulate the effect 

Figure 1.   EM-based subcutaneous implant glucose sensor. (a) Illustration of EM-based implantable sensor for 
BGL tracking; (1) blood capillary (2) electromagnetic sensor (3) dermis (4) subcutaneous fat (5) muscle tissue. 
(b) Proposed implant sensor. (c) Sensor size (15 mm × 4 mm ∅ ) compared with a coin. (d) Sensor frequency 
trend and corresponding variations in BGL.
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of glucose level on the permittivity of bio tissue environment, as it is not supported by the simulator. However, 
we did in vitro experiment to check effect of glucose level variations on permittivity of aqueous glucose solutions 
(supplementary file, method 1, Sect. 2).

The proposed implantable sensor is illustrated in Fig. 1b (also supplementary material Method 1, Sect. 1). The 
size of the sensor is compared against the size of a coin and shown in Fig. 1c. The sensor diameter is only 4 mm, 
compact enough and suitable for subcutaneous implantation. Figure 1d shows the sensor frequency variation with 
BGL trend. The sensor was subcutaneously inserted into the animal body. We performed both the intravenous 
glucose tolerance test (IVGTT) and oral glucose tolerance test (OGTT) with our sensor implanted in the animal 
(farm pig and beagle). In addition, we also developed a standalone sensor interface circuit board and mobile 
application that can continuously measure the sensor resonance frequency in the long-term evaluation of the 
sensor. Using the sensor system (EM sensor, interface circuit, and Android mobile application).

In the manuscript, short-term test is referred to one-time IVGTT test of the sensor performed on both swine 
and beagle, while long-term test is referred to a total 52 h (monitoring 17 h, measuring 35 h) OGTT experiment 
performed on a beagle. The long-term test on beagle was to verify continuous operation of sensor in tracking 
BGL while the animal was free to move around inside the experimental facility. Data processing algorithms such 
as linear regression and Kalman filter were used to remove fluctuations and high-frequency noise in the sensor 
reading. The mean absolute relative difference (MARD) and regression correlation coefficients were calculated 
to validate the sensor’s ability in tracking real time BGL.

Results
In vivo short‑term IVGTT on a swine.  In first in vivo experiment, we evaluated the sensor response 
towards real time blood glucose variations in a middle size farm pig. The sensor was subcutaneously implanted 
by the veterinary surgeon and IVGTT was conducted on the swine. At the implant site we observed body fluids, 
ISF and small trace of blood which was cleaned carefully before sensor implantation. After inserting the sensor 
and suture skin at the implant site, we continuously observed the sensor resonance frequency for approximately 
three hours before injecting glucose intravenously. We also injected phosphate-buffered saline (PBS) without 
any glucose and continuously recorded any change in the sensor resonance frequency. However, we did not 
observe any noticeable change in sensor resonance frequency. The total resonance frequency variations were 
significantly less than the frequency variation observed upon glucose injection.

After sensor implantation, bio tissue surrounding sensor changes slowly and the adhesion with sensor 
improves over the time. This slow changes of tissue around sensor causes sensor frequency drift. However, after 
some time the process saturates/diminishes and sensor reference frequency is set. It should be noted that during 
short-term IVGTT experiment, the animal was given controlled anesthesia. Hence sudden body movement was 
not noticed which potentially disturbs sensor reference frequency. This was observed during OGTT experiment 
on freely moving beagle. Other factor such as animals has loose skin and can’t hold the sensor firmly at a loca-
tion. This also disturbs the sensor reference frequency. Figure 1a shows the initial sensor resonance frequency 
behavior after surgery and insertion. We observed the continuous frequency drift to the lower side until 1 h 
and then slowly settling. We performed IVGTT by injecting glucose solution into the back leg vein. The sensor 
resonance frequency was recorded continuously with high sampling points setting in the vector network analyzer 
(VNA). We used two different methods, commercial blood glucose meter (BGM) and the standard Yellow Spring 
Instrument (YSI2500) to check BGL at every 5-min interval during IVGTT experiment. We observed an error 
margin within 10% between the two measured values with little higher reading on BGM at higher BGL ranges. 
The blood was drawn from the leg vein using a syringe. The blood sample was separated into blood plasma and 
red blood cell using a centrifuge as blood plasma have similar glucose level. The BGM (Caresens-N, i-SENS, 
Korea) reading were noted as the ‘measured BG level’ and data readings from the YSI2500 were noted as the 
‘reference BG level’. All glucose concentration was measured from the blood plasma. The BG level reached a 
maximum value at 376 mg/dL in a short period of time, and thereafter continued to decrease owing to natural 
insulin action of the body. The sensor resonance also followed a similar trend, albeit with a time delay. This is 
because the diffusion process of glucose from the blood vessel to ISF takes approximately 5–30 min depending 
on the metabolic rate of the living body35. A time delay of approximately 12 min was recorded between the peak 
BG level and the peak sensor resonance. The sensor frequency shifted by approximately 32 MHz, that is, from 
2.395 GHz (the lowest BG level was 61 mg/dL) to 2.362 GHz (the highest BG level was 376 mg/dL) (Fig. 2b 
upper graph). The sensitivity is approximately 104 kHz/1 mg/dL (0.104 MHz/mg/dL) frequency variation from 
the peak BG variations. The body temperature of a swine was in the range of 36.4 ± 0.3 °C, which is similar to 
that of a human (Fig. 2b lower graph).

The proposed EM sensor resonance data (S-parameters, S11 and S22) were continuously observed and recorded. 
Figure 2c,d show the resonance frequency point according to the BG level. The minima were tracked, and the 
trends are shown in Fig. 2b. The sensor resonance was observed around 2.4 GHz. The change in the resonance 
frequency was because of the change in the peripheral permittivity owing to the change in glucose level. As the 
glucose level increased, the resonant frequency shifted to a higher frequency band. The characteristics of S11 and 
S22 were slightly different but showed a similar trend.

In vivo short‑term IVGTT on a beagle.  In the second experiment, short-term IVGTT was conducted on 
a healthy beagle to verify the sensor frequency sensitivity with glucose level changes. Here, the sensor-embedded 
bio-environment is different from the swine case. The beagle had a very thin subcutaneous layer compared to the 
swine. Therefore, it was difficult to implant the sensor in the subcutaneous fat. Hence, it was implanted between 
the muscle and the skin layer. In general, ISF is present and covers all tissue. Owing to the higher permittivity of 
muscle tissue compared to that of subcutaneous fat, the sensor after implantation in the beagle had a lower refer-
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ence resonance frequency compared to swine case. Muscle has a higher dielectric permittivity (εr ~ 40) whereas 
subcutaneous fat (εr ~ 8). As a result, even with the same sensor, the reference resonance frequency moved about 
300 MHz to the left in beagle compared to swine.

In addition, the temperature effect on the sensor behavior should not be neglected. Since, the dielectric 
permittivity is also affected by temperature variations. During experiment core body temperature of the animal 
subject measured using a rectal temperature sensor. Experiments were done inside a temperature-controlled 
surgery room. During first IVGTT experiment on swine, it was observed the body temperature of the swine 
dropped after surgery, anesthesia, and glucose injection. However, the sensor frequency was unaffected and fol-
lowed the BGL trend. In the second IVGTT experiment on beagle, heating pads were used to keep animal warm 
and body temperature was maintain during experiment. The total variation in measured body temperature was 
0.6 °C and 0.1 °C for swine and beagle respectively during experiment.

After inserting the sensor into the beagle, the resonance frequency was measured continuously for approxi-
mately 2 h until the resonance frequency was reached at a stable condition without variation. Thereafter, PBS 
without glucose was administered into the beagle and the sensor frequency was continuously observed (1 h). This 
was done to mimic the sham test and verify the sensor behavior. Then, the IVGTT was performed, and continu-
ous sensor resonance measurement and BG level measurement at regular 5-min time intervals were performed. 
As BG changed, the sensor frequency also changed. The sensor frequency and trend in beagles varied in a similar 
way as in the case of swine. As soon as the glucose solution was injected, the BG level rapidly increased compared 
to the sensor frequency (Fig. 3a upper). The delay between the BG level and sensor frequency was approximately 
10 min due to the glucose diffusion process from the blood to the ISF.

When the BG level changed from 450 to 129 mg/dL (ΔGl = 321 mg/dL), the resonant frequency shifted 
from 2.0836 GHz to 2.0732 GHz (Δf = 10.34 MHz). As a result, the sensitivity change with respect to BG was 
approximately 32 kHz per 1 mg/dL of change in BG levels (Δf/ΔGl = 10.34/321 MHz/mg/dL). The variations in 
rectal temperature were recorded using a precision thermistor sensor inserted into the body. The temperature 
change was 35.4–35.5 °C during the experiment (Fig. 3a lower). With an increase in the BG level, the resonance 

Figure 2.   Results of the IVGTT conducted on swine. (a) Sensor insertion and initial frequency response filtered 
(i) surgery and sensor insertion (ii) monitoring (iii) frequency drifting (iv) saline (v) frequency drift saturate. (b) 
Sensor frequency response after glucose injection (i) Glucose solution injection, sensor resonance (ii) shifts to 
the maximum frequency, (iii) slowly decreases and follows the BG level, (iv) returns to the initial BG level, and 
body temperature variation during test. (c) S11 parameter and (d) S22 parameter with respect to BGL.
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frequency also increased. When the BG level decreased, the resonance frequency shifted to a lower frequency 
(Fig. 3b,c).

In vivo long‑term OGTT on a beagle.  After the initial in vivo IVGTT experiments were performed on 
swine and beagle, sensor resonance frequency and operational bandwidth were analyzed for the development 
of sensor interface circuit board. During IVGTT the animals were anesthetized, and network analyzer (E5071C, 
Keysight) attached with long RF cables was used to measure sensor frequency. However, this setup was not 
suitable for conducting long-term tests as the animal was not under anesthesia. Moreover, it was dangerous to 
keep the animal under anesthetized for a long time. Therefore, the sensor was implanted, and connected to the 
interface board for continuous monitoring. The portable glucose monitoring system consisted of a sensor and 
an interface board (Fig. 4a). The sensor was inserted under the skin, and the interface board was taped outside 
the body. To supply power to the sensor and interface board, a high-capacity battery was also attached on a sup-
porting jacket. The jacket was used to firmly hold the battery such that the sensor connections are not affected by 
movements of the beagle. The interface board can continuously measure the sensor resonance frequency without 
any interruption and send the data to the Android mobile application through a Bluetooth link (supplementary 
materials method 2, Sect. 4). After implanting the sensor, the beagle was kept inside a cage and allowed to move 
freely outside the cage. The animals were kept overnight in normal conditions and fed with food and water until 
the next morning. During this period, no glucose injection or BG level monitoring was performed. The sensor 
frequency BG level was measured in the morning of the next day with OGTT (Fig. 4b). The measurement plot 
is divided in four different zones (Fig. 4c). ‘Zone (i)’ shows the measurement results when the beagle was fed 
and ‘Zone (ii)’ shows the oral glucose feeding and corresponding sensor frequency variation. A small change 
in BG and a similar change in the sensor frequency can be seen. Instead of injecting glucose solution intrave-
nously, it was administered orally. The oral glucose administration during OGTT did not increase the BG level 
in the beagle as fast as IVGTT. This is because glucose spreads to the blood through the digestive tract, and then 
it spreads from blood to ISF, which is a slower process. After reaching the highest point ‘Zone (iii), the sensor 
frequency also decreased following the BG level ‘Zone (iv)’. Strong fluctuations in the sensor reference frequency 

Figure 3.   Results of the IVGTT conducted on a beagle. (a) Sensor resonance frequency variation with 
real-time BGL: Sensor frequency (i) before glucose injection (ii) after glucose injection (iii) maximum point 
(iv) decreasing and following BGL (v) does not vary as BGL does not vary, also shown body temperature 
monitoring, (b) S11 and (c) S22  parameter of the sensor and corresponding BGL.
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were observed due to the body movements of the beagle. The results of the second OGTT also showed a similar 
trend as shown in Fig. 4d. The increasing sensor frequency response with BGL is shown in ‘Zone (v)’. During the 
OGTT experiment, a similar trend of increasing sensor frequency to the peak ‘Zone (vi)’ and then decreasing 
with BGL ‘Zone (vii)’ were observed.

Frequency to BGL regression and analysis.  During all in vivo IVGTT and OGTT experiments, after 
intravenous glucose administration or oral glucose administration, the BGL was observed to change. It moved 
higher, reached peak level then decreased naturally. The sensor frequency in each case also followed the BGL 
trend. The proposed sensor can track the BGL trend from a reference point. Sensor frequency to BGL mapping 
can be derived for calculating BGL for certain sensor frequency. The linear regression and correlation between 
the BGL and sensor frequency are derived and shown in Fig. 5a. the black line is for swine linear fit and the red 
line is for beagle linear fit. The proposed sensor shows good linearity with BGL in both cases. Even though two 
modeling linear regression are not same for different animal, the proposed sensor worked in a similar manner. 
The y-intercept of the regression is the reference frequency of sensor in individual cases. It can be seen that 
there is an offset in reference frequencies in both cases. Figure 5b was difference glucose level between reference 
measurement and calculation by each linear regression arranged from lower to higher BGL. The calibration 
coefficients of the linear models for the beagle and the pig are similar but not the same. For the generalized per-
formance of the sensor, we inverse calculate sensor frequency for swine using beagle calibration equation with 
beagle BGL data, and vice versa. Since the sensor reference frequency in case of swine and beagle are different, 
an offset in frequency was added. From Fig. 5c it can be seen that original calibration line and inverse calculated 
frequency has similar trend, however a higher difference is observed for higher BGL values. This is mainly lim-
ited availability of BGL data points to derive original calibration line. This can be improved with more experi-
ments and more data collection. The Clarke’s error gird analysis (EGA) is shown in Fig. 5d. It can be seen that 
data points are mostly distributed in Zone-A and Zone-B. The accuracy of each BG level range was ascertained 
using the MARD value. Accuracy could be checked through error grid analysis (EGA); however, it was difficult 
to determine the range in which the accuracy was high and low due to availability of fewer reference blood 
glucose data. Therefore, the MARD values were classified and analyzed according to the ranges. MARD results 

Figure 4.   OGTT experiment on beagle using sensor and interface board. (a) Proposed sensor and interface 
circuit board (Android app receive the sensor information using Bluetooth, MCU controller, PLL for RF 
generation and input to sensor); Interface board consists of three major parts: power management part (voltage 
regulator, LDO); RF part (PLL, wideband coupler, envelope detector); digital part (ADC, MCU). (b) OGTT 
(beagle fed with glucose solution): (1) Glucose solutions (2) Interface board (3) Battery. (c) Day-1 OGTT: 
(i) Trend of BGL and sensor frequency while feeding the beagle; (ii) first oral glucose administration; (iii) 
maximum BGL and corresponding sensor frequency with a time lag; (iv) sensor frequency decreases as the BGL 
decreases. (d) Day-2 OGTT (v) Second oral glucose administration; (vi) maximum BGL and corresponding 
sensor frequency with a time lag; (vii) sensor frequency decreases as the BGL decreases.
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are separated into different zones as shown in Fig. 5e and supplementary material method 3 Sect. 7. The mean 
absolute deviation (MAD) results (Fig. 5f) were separated in five ranges according to BG levels. In the Range 1 

Figure 5.   analysis results of Linear Regression, MARD, MAD, and EGA. (a) Analysis of linear regression about 
swine ( R2

= 0.92604 ) and beagle ( R2
= 0.93399 ). (b) Compared between calculated BGL and reference BGL: 

(1) swine (upper) (2) Beagle (lower). (c) using regression equation of swine on beagle BGL measurement data 
and vice versa: (1) beagle measurement, (2) Swine measurement (3) Swine data offset (4) Beagle Glucose level 
(5) Swine Calculation (6) Beagle calculation (7) Beagle data offset (8) Swine Glucose level. (d) EGA for the 
beagle and swine (Zone-A: 92.31% n = 24, Zone-B: 7.69% n = 2, Zones-C, D, E: 0%). (e) Change in MARD values 
according to the glucose level areas (n = 30). (f) Comparison between reference BGL and predicted BGL. The 
distribution (n = 30) was determined by dividing the glucose level into five glucose level areas. (1) The average 
value of MAD was 8.6119 in the standard BGL range (BG < 120 mg/dL, n = 5). (2) The average MAD value was 
9.0977 for the glucose level area of pre-diabetes and diabetes (120 < BG < 180 mg/dL, n = 4). (3) The average 
MAD value was 17.2447 in the glucose level area of diabetes (180 < BG < 240 mg/dL, n = 8). (4) The average 
MAD values of the high-risk and hyperglycemia groups (240 < BG < 300 mg/dL, n = 5 BG > 300 mg/dL, n = 8) 
were 12.6545 and 33.6701 mg/dL, respectively.
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i.e., the normal range (BGL < 120 mg/dL), the reference and error values had a small difference of 8.6119 mg/
dL. In the Range 2 is defined as the area above normal glucose level (20 mg/dL < BGL < 180 mg/dL). The relative 
average error was found to be 9.0977 mg/dL. Even though the minimum and maximum error values increased 
compared to the results of Range 1, the overall error it is still within the margin. Nevertheless, the sensor had a 
high linearity of BG and frequency change. When the reference glucose level and the measured glucose value 
were compared, the average value for MAD was calculated to be 18.94 mg/dL. MARD, which is the most impor-
tant index in BG measurement, was within 9.67% in Table 1.

Conclusion
Present work is an effort for the realization of implantable electromagnetic-based sensor, which can be an alter-
nate to enzyme-based or optical-based glucose sensor. The sensor does not detect or track glucose molecules 
directly from blood or ISF, rather the resonance frequency of the sensor changes with changes in dielectric per-
mittivity of ISF owing to change in BGL. In a way, it can track blood glucose trend from a reference or calibration 
point. Once a day calibration with SBGM can be used to measure blood glucose and set the reference frequency 
point of sensor. A linear regression model between sensor frequency and BGL is also developed for frequency 
to BGL mapping. Initial proof-of-concept in vivo experiment was performed with sensor implanted to swine 
and beagle in a controlled environment. A good correlation between sensor frequency and BGL is seen during 
in vivo IVGTT and OGTT experiments on swine and beagle. In addition, the developed sensor interface module 
is capable of continuous measurement, and the real-time sensor data can be visualized using the Android mobile 
application. Our proposed sensor and system are indeed in the early stage of development. However, the proof-
of-concept in vivo results show promising correlation between BGL and sensor frequency response. Indeed, the 
sensor shows the ability to track BGL trend. For actual sensor implantation we must consider bio compatible 
packaging and foreign body reactions (FBR) for long term applications. In addition, improved sensor interface 
system is under development.

Experimental methods
The study and experimental procedure were carried out in accordance with the ARRIVE guidelines. All experi-
ments were performed according the relevant guidelines and recommendations. Experiments were performed 
at Animal Testing Center of KBIO Health Medical Device Development Center (Osong Medical Innovation 
Foundation, Osong, Chungbuk, Korea) following approval of the Institutional Animal Care and Use Committee 
(KBIO-IACUC-2020-172).

We performed animal experiment for in vivo evaluation of our sensor on swine (n = 1, Cornex, Korea) and 
beagle (n = 1, Orient bio, Korea). The experiment was conducted on healthy animals after the acclimation period 
of 1 week. For the short-term test, anesthesia was done by the veterinarian. Intramuscular injection of tiletamine-
zolazepam 5 mg/kg (Zoletil®, virbac, south korea) and Xylazin 2 mg/kg (Rompun®, bayer, south korea) at endotra-
cheal tube intubation was performed. Anesthesia was maintained with 1–1.5% isoflurane (Terrell™, piramal 
critical care, USA) using anesthesia machine (Fabius GS premium, dragger, Germany) during the experiment.

Biosensor based on an EM resonator.  Depending on their far- and near-field characteristics, EM reso-
nators are widely used as communication antennas and sensors, respectively. A stronger far field leads to a radia-
tive nature with excellent transmission and reception in wireless communication systems. However, they are 
not suitable for sensing applications. The EM property near the field is highly suitable for sensing and detecting 
applications ranging from EM sensors to actuators. The proposed sensor utilizes high-quality (ratio of stored 
energy to radiated energy) resonance with a strong oscillating near field. As an inherent interaction mechanism, 
EM-based sensors can be designed to be significantly sensitive in detecting dielectric permittivity changes. Suit-
ably designing an EM resonator with tailored near-field energy confinement in a thinner structure (compared 
to the guided wavelength) is the key behind these sensors. This minimized the radiative energy from the sensor.

Metamaterials have been the most popular over the past few decades for designing electromagnetic resona-
tors and structures for various applications. The planar (2D) versions of these materials are called metasurface 
(MTS). These MTS are periodic in nature by repeating a structure called a unit cell. The EM properties of the MTS 
are controlled by suitably designing the unit cell. The proposed sensor has these advantages and can be realized 
using a truncated MTS. The regular periodic nature of metamaterials limits their benefits in realizing compact 
sensors. However, in the present case, a special two-port coupled excitation was designed and tuned to achieve 

Table 1.   IVGTT result summary.

Parameters Beagle Swine

Linear regression (Y: Freq. X: BGL) Y = 2.06663 + 0.00003927x Y = 2.34946 + 0.00013362x

R
2 fit 0.93399 0.92604

BGL range (mg/dL) 129–450 64–376

Frequency change (Max. to Min) 10 MHz 32 MHz

Sensitivity per 1 mg/dL 42 kHz 112 kHz

Average (MAD) 18.94 mg/dL

MARD 9.67%
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resonance in a compact truncated MTS. The sensor is a combination of an MTS unit cell excited with coupled 
feed line excitation. The coupled feed line was chosen because of its coplanar structure, with one side requiring 
metallization (copper) suitable for our case (supplementary material Method 1, Sect. 1, 2 and 3).

Sensor interface module for long‑term measurement.  The scattering parameters are analyzed to 
completely characterize the sensor behavior toward changes in BGL. Network analyzer was used to measure the 
sensor resonance characteristics during the short-term test. However, bulky VNA and long RF cables are not 
suitable for long-term measurements. Therefore, a compact sensor interface module powered by a high-capacity 
battery was used for long-term measurements. The implant glucose sensing system consists of three functions: 
power management, RF section, communication, and control, which can communicate data to the outside by 
using Bluetooth function (supplementary material Method 2, Sect. 4).

Short‑term IVGTT for in‑vivo studies of a swine.  The first in vivo test was conducted on a swine. It 
had a similar BG variation to that of humans. Therefore, it was reasonable to implant our sensor and perform 
an IVGTT to evaluate the sensor behavior. The swine used was a farm swine (Cornex, Republic of Korea). The 
weight of the four-month-old female swine was approximately 40 kg. The body temperature was 37.2 °C. The 
swine was under fasting conditions for 24 h before the experiment. The sensor was inserted into the subcutane-
ous fat of the back flank. The subcutaneous layer of swine was considerably thick compared to other animals and 
the area was easily distinguished between muscle layer and subcutaneous fat layer to insert the sensor. Bleeding 
was observed when the skin was incised at the sensor implantation site. A heated knife was used to incise the 
skin to avoid local bleeding. Small blood traces were carefully removed and wiped as it interferes with sensor 
characteristics A heating pad (Blanketrol-II, Gentherm, USA) was used to maintain the subject’s body tempera-
ture during the insertion procedure and experiments. After inserting the sensor into the body of the subject, an 
IVGTT was conducted36. A 20% glucose solution was injected through the ear vein. A commercial blood glucose 
meter and YSI2500 were used to measure BGL from blood sampled from leg vein at regular intervals. Sensor 
frequency and measured BGL was used for frequency to BGL mapping.

Short‑ and long‑term GTTs for in‑vivo studies of a beagle.  In biomedical research, beagles are usu-
ally considered for proof-of-concept evaluation to device performance measurements during development of 
various biomedical sensors. It is a suitable candidate to us for the short-term measurements as well as long-term 
measurements of proposed sensor37. The beagle was 22-months old female weighing 12.5 kg. The sensor was 
inserted under the skin and connected to a network analyzer for measurements in short-term experiment. The 
change in the sensor resonance frequency and corresponding BG level were recorded. Whereas, for long-term 
measurements we used a customized compact measurement circuit board that detects sensor frequency and 
transmits the data to a mobile using Bluetooth link. An Android app running on the mobile displays the infor-
mation in a graphical view.

The IVGTT was conducted by injecting a 20% glucose solution into the leg vein, and blood was collected 
from the opposite leg. In the case of long-term measurements, the subject cannot be put under anesthesia for a 
long time; hence, a sensor interface board was developed. Long term test’s experimentally time was totally 52 h 
(monitoring 17 h, measuring 35 h). After surgery to the implant sensor, the subject (animal) needed self-curing 
time to be normalized about body condition such as maintaining normal temperature, stopping bleeding etc. 
The sensor interface board is compact and can be programmed to track the sensor’s resonance point. Blood was 
collected for a certain period to ensure the glucose trend. In the long-term experiment, 20% glucose solution 
was used in the OGTT.

Data processing.  The data were recorded continuously during the short term IVGTT experiments using a 
vector network analyzer and during long-term sensor measurements using in-house developed sensor interface 
circuit board. We observed more noise in the measured frequency data during the long-term experiment. Firstly, 
the sudden changes in the frequency are motion induced spikes due to the movement of beagle. Another source 
of noise was introduced by the measurement circuit itself due to ADC (analog to digital conversion) resolution. 
Since, we used a network analyzer to measure sensor resonance frequency during short-term experiment, the 
data were much cleaner compared to the long-term measurement. We used moving averaging filter to remove 
sudden high changes and fluctuations in measured frequency data. Depending on the window size, the memory 
requirement also changes. A larger window size requires more memory to save previous time series data, but 
gives a smother filtering compared to that of smaller window size filter. A larger window may also remove small 
and valid trends in data. It smoothens the frequency trend, however also introduce time lag depending on the 
filtering window size (supplementary materials Fig. S5c). A larger averaging window also requires more storage 
memory. An alternate method is to use Kalman filter which requires only last time step data to calculate/ predict 
filtered data. In case of long-term test, it can be seen that it has sudden and high rate of change in frequency. So, 
we applied Kalman filtering to discard those spikes. The noise in measured data was also due to various factors 
e.g., motion induced fluctuations (due to movement of beagle), body fluid accumulation around sensor, and 
changes in tissue contact surrounding the sensor over time. Owing to these factors, the resonance frequency was 
not clean compared to the situation when the sensor was suspended in air.

Considering time required for each full range frequency sweep and wireless data (measured sensor frequency 
information) transmission, 12 times per minute sample were possible and recorded. A higher sampling rate over 
a narrow frequency span around sensor resonance point can reduce noise significantly. However, the memory 
requirement and processing time was a limiting factor. The Kalman filter was applied to find a clear trend in a 
noisy measurement environment38 (supplementary material Method 3, Sect. 5). It clearly removes high-frequency 
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fluctuations compared with a regular averaging filter. Linear regression modeling was also performed on the 
filtered data to calculate the correlation between sensor frequency and BG level39 (supplementary material 
Method 3, Sect. 6). Glucose level corresponding to a sensor frequency can be calculated (predicted) using the 
linear regression equation. The MAD (Mean absolute deviation) MARD (Mean absolute relative difference) was 
calculated by comparing the predicted BG level with the reference BG level. The MAD and MARD was defined 
in Eqs. (1) and (2).

BGpredicted(i) was the measured glucose concentration value that was converted from frequency to glucose 
level. That value was derived through linear regression. BGRef(i) was measured using YSI2500).n represents the 
number of measurements. MAD indicated error value between BGpredicted(i) and BGRef(i) . MARD was an indica-
tion of error rate scale between predicted glucose level and reference glucose level. Generally, a BG meter has an 
accuracy of 15% MARD40 (supplementary material Method 3, Sect. 7). From the EGA analysis, it can be seen 
that the sensor data are uniformly distributed from the hypoglycemic to the hyperglycemic range41. This ensures 
the sensor is capable of tracking BGL variations with high confidence.

Data availability
We declare, datasets generated and/or analyzed during the current study are not publicly available due to regula-
tions from the funding agency. However, it can be made available from the corresponding author upon reason-
able request.
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